Genome Biology & Evolution, July 18, 2016

Supplementary Files

Centromeres of the yeast *Komagataella phaffii* (*Pichia pastoris*) have a simple inverted-repeat structure

Aisling Y. Coughlan¹, Sara J. Hanson¹, Kevin P. Byrne¹ and Kenneth H. Wolfe^{*,1}

¹UCD Conway Institute, School of Medicine, University College Dublin, Dublin 4, Ireland *Corresponding author: E-mail: kenneth.wolfe@ucd.ie

Supplementary Figure legends

Figure S1. Construction of 3xHA-tagged CSE4. (A) Multiple sequence alignment of Cse4 proteins. The red line shows the site of HA tag insertion previously used for ChIP in *S. cerevisiae* (Scer; Stoler et al. 1995), *Naumovozyma castellii* (Ncas; Kobayashi et al. 2015), *Ogataea polymorpha* (Opol; Hanson et al. 2014) and *K. phaffii* (Kpha; this study). (B) Strategy for tagging *K. phaffii* CSE4. The synthetic DNA fragment, *KanMX* marker and *CSE4* downstream DNA were joined by fusion PCR. The entire cassette was then transformed into *K. phaffii* CBS12964 to replace the endogenous *CSE4* gene by homologous recombination. (C) Sequence of the synthetic DNA. The 3xHA tag is in lowercase.

Figure S2. Dot matrix plot of the four *K. phaffii* centromeres compared to each other.

Regions of approximately 10 kb around each centromere were concatenated and compared. The arrows indicate a small similarity between *CEN1* and *CEN4*. The plot was constructed with Dotter (Sonnhammer and Durbin 1995), with the Greyramp parameters set to 40 (min.) / 100 (max.).

Figure S3. Mating-type switching does not induce recombination at centromeric IRs. GS115 S-1 to S-4 are four *MAT*a clones induced by mating-type switching of a GS115 *MAT*alpha strain. Centromere orientation-specific PCR was carried out with primers A-D for each centromere as in Figure 4.

Figure S4. Dot matrix plot of the seven *C. tropicalis* centromeres compared to each other. Parameters are identical to Figure S2. *C. tropicalis* sequence data is from Butler et al. (2009) with centromeres identified by Chatterjee et al. (2016).

Figure S5. Dot matrix plot of the three *Sch. pombe* **centromeres compared to each other.** Red lines indicate points of concatenation between chromosomes. The plot was constructed with Dotter (Sonnhammer and Durbin 1995), with the Greyramp parameters set to 100 (min.) / 150 (max.) to accommodate the larger scale of this figure compared to Figures S2 and S4. The diagram was constructed using the reference genome sequence of *Sch. pombe* which lacks some copies of *otr* units as indicated by the word GAP on the Y-axis (see Fig. 1 of Wood et al. 2002). The *dg* and *dh* components of the *otr* are marked; *dh* has a different orientation on *cen1* compared to *cen2* and *cen3*. The *tm* region of similarity between *cc1* and *cc3* is also marked.

2

 Table S1. Sequences of primers used for centromere orientation-specific PCR.

Centromere	Primer name	Sequence (5'-3')
CEN1	PpCEN1_A1	GGTAATATCCAGCAGTCAGACCC
CEN1	PpCEN1_B1	CTTTGCACCAATTAGCGCATAGC
CEN1	PpCEN1_C1	CCGGCGACAGTATCAATCACTTC
CEN1	PpCEN1_D1	GTCTTTCAGAGAGGAGCAATGC
CEN2	PpCEN2_A1	GATCCGGACTCTTTACAAAAAGC
CEN2	PpCEN2_B1	TGGTCGCATGGCCAACTG
CEN2	PpCEN2_C1	GCGCTGCACTGTTCACATAG
CEN2	PpCEN2_D1	CGATCTCCGTTGATACTCCCAAC
CEN3	PpCEN3_A1	GCTCCGTCAGCTTGAATAAGCC
CEN3	PpCEN3_B1	AATTATGCTAGGGAGAGCTTGC
CEN3	PpCEN3_C1	GGAGGCAGACACGCTTACC
CEN3	PpCEN3_D1	CGACAAGTGGTACACCAGTCAG
CEN4	PpCEN4_A1	CACCTTAACGAGAAGCCGAG
CEN4	PpCEN4_B1	GCAACTTTGGTCCTGAGGTCCTG
CEN4	PpCEN4_C1	GGGCAAACAGCATCCAGC
CEN4	PpCEN4_D1	GTACCCTTTGAAGAGACCACACC

Scer	MSSKQQWVSSAIQSDSSGRSLSNVNRLAGDQQSINDRALS
Ncas	MSSRKFVEQGHAQNSSSHLFSNILDNDSG-SLSNINRLTLDPDNTEDLLQQEVINERALS
Kpha	AGNRLNRLGS
Opol	MARLNKHKPVS
1	: ** . *
Scer	LLQRTRATKNLFPRREERRR-YESSKSDLDIETDYEDQAGNLEIETENEEEAEM
Ncas	LLQRTRERRNLLHRFEDKRRYYNQGQDDGDLESVASSHYRSNDVGGNFQFFDQEEDEDEE
Kpha	ISPKTPRSAVSNSASGSARTHTGTPR
loqO	TTPKTPKMGSSTSFKNSPASIKKTPSK
	.*
Scer	ETEVPAPVRTHSYALDRYVRQKRREKQRKQSLK-RVEKKYT
Ncas	GNAIDDDYGTLDOSNIIDRHOERRKGNKHSROERHHORELKORVEKIRTOROVGNTKKFT
Kpha	GNKTP-IRNVITSSTGISRNOPGDPLPI-AKKYRYK
logO	SSETPKVKAGSTLSSGLARNOPGDPTEIKTOKKRFK
	· * : * · · · · · · · · · · · ·
Scer	PSELALYEIRKYQRSTDLLISKIPFARLVKEVTDEFTTKDQDLRWQSMAIMALQEASEAY
Ncas	PSSLALYEIRKYQRSSELLISKIPFTKLVKEVTDEFTVEDQQLHWQSMAIVALQEASEAY
Kpha	PGTLALREIKRYOKSTDLLLRKLPFARLVREIAOENFIOGEMFOWOSVAILALOEAAEAF
logO	PGTVALREIRRFOKSTELLIRKLPFARLVREIVODEF-GTSTYRWOSVAVLALOEAVEAY
-	*. :** **:*.**: *:**:.**.*:**
Scer	LVGLLEHTNLLALHAKRITIMKKDMQLARRIRGQFI
Ncas	LVGLLEHANLLAIHAKRITLMKKDIQLARRIRGQFI
Kpha	LVGLLEDTNLCALHAKRVTIMOKDIOLARRIRGDGI
logo	LVHLFEDTNLCALHAKRVTIMOKDIHLARRLRGD
- -	** *:* :** *:***:*:*:*:**:**:

С

ATGGCGAGGCTTAGTATAGCAGGTAACAGGTTGAATAGATTAGGTTCTATTTCGCCTAAAACGCCTAGATCAGCAGTATC CAATTCTGCCTCCGGGTCAGCTAGAACCCACACAGGAACACCAtacccatacgatgttcctgactatgcgggctatccgt atgacgtcccggactatgcaggatcctatccatatgacgttccagattacgctAGAGGTAATAAGACTCCAATACGGAAT GTAATAACAAGTAGCACAGGAATTAGTAGAAATCAACCCGGAGACCCTCTACCCATTGCAAAGAAATACAGATACAAACC TGGAACGTTAGCTTTAAGAGAGATTAAAAGATATCAAAAATCCACAGACTTGCTCTTGCGTAAGCTACCCTTTGCTCGAC TAGTGAGGGAAATAGCCCAGGAGAACTTCATTCAAGGAGAAATGTTTCAATGGCAAAGCGTGGCCATCTTAGCTTTACAA GAAGCGGCCGAAGCCTTCTTGGTAGGCTTACTGGAAGATACAAATCTGTGCGCCCTCCACGCAAAAAGAGTCACCATAAT GCAGAAAGACATCCAACTAGCAAGAAGGATAAGAGGTGATGGGATC

Figure S2

Figure S3

